Barbara Imperiali

Barbara Imperiali

Class of 1922 Professor of Biology and Chemistry

Barbara Imperiali studies the biogenesis and myriad functions of glycoconjugates in human health and disease.

617-253-1838

Phone

68-380A

Office

Building 68 - Koch Biology Building

Location

Meg Rheault

Assistant

617-253-1809

Assistant Phone

Education

  • PhD, 1983, MIT
  • BSc, 1979, Medicinal Chemistry, University College London

Research Summary

We study diverse aspects of protein structure and function and employ multidisciplinary approaches to address fundamental problems at the interface of chemistry and biology. We are fascinated by the amazing complexity and myriad functions of glycoconjugates in human health and disease. Still more enthralling are the intricate membrane-associated pathways that lead to the cellular biogenesis of these important macromolecules. Our group applies approaches and technologies from a wide range of synergistic fields including chemical biology (for inhibitor and probe development), biochemistry and biophysics (for analyses within and beyond native and model membranes), and cellular, molecular and microbiology to unravel these pathways. Ultimately we seek to decipher the molecular logic of glycoconjugate biosynthesis and to identify processes to target in the study of infectious disease.

Awards

  • National Academy of Sciences, Member, 2010
  • Fellow of the Royal Society of Chemistry (FRSC) 2006
  • American Chemical Society - Breslow Award for Achievement in Biomimetic Chemistry 2006
  • Protein Society - Kaiser Award, 2006
  • Margaret MacVicar Faculty Fellow, 2003-2013
  • American Academy of Arts and Sciences, Fellow, 2001

Key Publications

  1. A Strategic Approach for Fluorescence Imaging of Membrane Proteins in a Native-like Environment. Swiecicki, JM, Santana, JT, Imperiali, B. 2020. Cell Chem Biol 27, 245-251.e3.
    doi: 10.1016/j.chembiol.2019.11.008PMID:31831268
  2. Membrane association of monotopic phosphoglycosyl transferase underpins function. Ray, LC, Das, D, Entova, S, Lukose, V, Lynch, AJ, Imperiali, B, Allen, KN. 2018. Nat Chem Biol 14, 538-541.
    doi: 10.1038/s41589-018-0054-zPMID:29769739
  3. Analysis of a dual domain phosphoglycosyl transferase reveals a ping-pong mechanism with a covalent enzyme intermediate. Das, D, Kuzmic, P, Imperiali, B. 2017. Proc Natl Acad Sci U S A 114, 7019-7024.
    doi: 10.1073/pnas.1703397114PMID:28630348
  4. Lipid bilayer nanodisc platform for investigating polyprenol-dependent enzyme interactions and activities. Hartley, MD, Schneggenburger, PE, Imperiali, B. 2013. Proc Natl Acad Sci U S A 110, 20863-70.
    doi: 10.1073/pnas.1320852110PMID:24302767

Recent Publications

  1. Mapping the architecture of the initiating phosphoglycosyl transferase from S. enterica O-antigen biosynthesis in a liponanoparticle. Dodge, GJ, Anderson, AJ, He, Y, Liu, W, Viner, R, Imperiali, B. 2024. Elife 12, .
    doi: 10.7554/eLife.91125PMID:38358918
  2. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies. Seebald, LM, Haratipour, P, Jacobs, MR, Bernstein, HM, Kashemirov, BA, McKenna, CE, Imperiali, B. 2024. J Am Chem Soc 146, 3220-3229.
    doi: 10.1021/jacs.3c11402PMID:38271668
  3. Characterization of PglJ, a Glycosyltransferase in the Campylobacter concisus N-Linked Protein Glycosylation Pathway that Expands Glycan Diversity. Arbour, CA, Vuksanovic, N, Bernstein, HM, Allen, KN, Imperiali, B. 2024. Biochemistry 63, 141-151.
    doi: 10.1021/acs.biochem.3c00564PMID:38110367
  4. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies. Seebald, LM, Haratipour, P, Jacobs, MR, Bernstein, HM, Kashemirov, BA, McKenna, CE, Imperiali, B. 2023. bioRxiv , .
    doi: 10.1101/2023.09.19.558431PMID:37786673
  5. Defining early steps in Bacillus subtilis biofilm biosynthesis. Arbour, CA, Nagar, R, Bernstein, HM, Ghosh, S, Al-Sammarraie, Y, Dorfmueller, HC, Ferguson, MAJ, Stanley-Wall, NR, Imperiali, B. 2023. mBio 14, e0094823.
    doi: 10.1128/mbio.00948-23PMID:37650625
  6. Deploying solid-phase synthesis to access thymine-containing nucleoside analogs that inhibit DNA repair nuclease SNM1A. Arbour, CA, Fay, EM, McGouran, JF, Imperiali, B. 2023. Org Biomol Chem 21, 5873-5879.
    doi: 10.1039/d3ob00836cPMID:37417819
  7. Mapping the architecture of the initiating phosphoglycosyl transferase from S. enterica O-antigen biosynthesis in a liponanoparticle. Dodge, GJ, Anderson, AJ, He, Y, Liu, W, Viner, R, Imperiali, B. 2023. bioRxiv , .
    doi: 10.1101/2023.06.16.545297PMID:37398332
  8. Human oral lectin ZG16B acts as a cell wall polysaccharide probe to decode host-microbe interactions with oral commensals. Ghosh, S, Ahearn, CP, Isabella, CR, Marando, VM, Dodge, GJ, Bartlett, H, McPherson, RL, Dugan, AE, Jain, S, Neznanova, L et al.. 2023. Proc Natl Acad Sci U S A 120, e2216304120.
    doi: 10.1073/pnas.2216304120PMID:37216558
  9. Co-conserved sequence motifs are predictive of substrate specificity in a family of monotopic phosphoglycosyl transferases. Anderson, AJ, Dodge, GJ, Allen, KN, Imperiali, B. 2023. Protein Sci 32, e4646.
    doi: 10.1002/pro.4646PMID:37096962
  10. A generalizable protocol for expression and purification of membrane-bound bacterial phosphoglycosyl transferases in liponanoparticles. Dodge, GJ, Bernstein, HM, Imperiali, B. 2023. Protein Expr Purif 207, 106273.
    doi: 10.1016/j.pep.2023.106273PMID:37068720
More Publications

Multimedia

 

Photo credit: Elizabeth Fong