Pulin Li

Education

  • PhD, 2012, Chemical Biology, Harvard University
  • BS, 2006, Life Sciences, Peking University

Research Summary

We are curious about how circuits of interacting genes in individual cells enable multicellular functions, such as self-organizing into structured tissues. To address this question, we analyze genetic circuits in natural systems, combining quantitative measurements and mathematical modeling. In parallel, we test the sufficiency of the circuits and understand their design principles by multi-scale reconstitution, from genes to circuits to multicellular behavior, using synthetic biology and bioengineering tools. Together, we aim to provide both a quantitative understanding of embryonic development and new ways to engineer tissues.

Awards

  • New Innovator Award, National Institutes of Health Common Fund’s High-Risk, High-Reward Research Program, 2021
  • R.R. Bensley Award in Cell Biology, American Association for Anatomy, 2021
  • Santa Cruz Developmental Biology Young Investigator Award, 2016
  • NIH Pathway to Independence Award K99/R00 (NICHD), 2016
  • American Cancer Society Postdoctoral Fellowship, 2015
Ankur Jain

Education

  • PhD, 2013, University of Illinois, Urbana-Champaign
  • BTech, 2007,  Biotechnology and Biochemical Engineering, Indian Institute of Technology Kharagpur

Research Summary

We study how biomolecules in a cell self-organize. In particular, we are interested in understanding how membrane-free cellular compartments such as RNA granules form and function. Our lab develops new biochemical and biophysical techniques to investigate these compartments and to understand their dysfunction in human disease.

Awards

  • Young Alumni Achiever’s Award, Indian Institute of Technology Kharagpur, 2019
  • NIH K99/R00 Pathway to Independence Award, 2017
  • Pew Scholar in the Biomedical Sciences, 2022
Robert A. Weinberg

Education

  • PhD, 1969, MIT
  • SB, 1964, Biology, MIT

Research Summary

We investigate three broad questions related to the origin and spread of cancer. First, how do cancer cells within a primary tumor acquire the ability to invade and metastasize? Second, how are the stem-cell state and the epithelial-mesenchymal transition interrelated? Third, how are the regulators of the epithelial-mesenchymal transition able to activate this profound change in cell phenotype?

Awards

  • Japan Prize, Japan Prize Foundation, 2021
  • Salk Institute Medal for Research Excellence, 2016
  • Breakthrough Prize in Life Sciences, 2013
  • Wolf Foundation Prize, 2004
  • Institute of Medicine, Member, 2000
  • Keio Medical Science Foundation Prize, 1997
  • National Science Foundation, National Medal of Science, 1997
  • Harvey Prize, 1994
  • American Academy of Arts and Sciences, Fellow, 1987
  • Sloan Prize, GM Cancer Research Foundation, 1987
  • National Academy of Sciences, Member, 1985
  • Robert Koch Foundation Prize, 1983
Sebastian Lourido

Education

  • PhD, 2012, Washington University in St. Louis
  • BS, 2004, Cellular and Molecular Biology and Studio Art, Tulane University

Research Summary

Our lab is interested in the molecular events that enable apicomplexan parasites to remain widespread and deadly infectious agents. We study many important human pathogens, including Toxoplasma gondii, to model features conserved throughout the phylum. We seek to expand our understanding of eukaryotic diversity and identify specific features that can be targeted to treat parasite infections.

Awards

  • Odyssey Award, Smith Family Foundation, 2021
Peter Reddien

Education

  • PhD, 2002, MIT
  • SB, 1996, Molecular Biology, University of Texas at Austin

Research Summary

We investigate how stem cells are regulated to regenerate missing tissues. We study the cellular events involved in this process and the attendant roles for regulatory genes that control regeneration steps. We utilize an array of methodologies, including high-throughput sequencing, RNA interference (RNAi) screening, and numerous assays and tools for phenotypic analysis to characterize regeneration regulatory genes.

Awards

  • Howard Hughes Medical Institute, HHMI Investigator, 2013
David C. Page

Education

  • MD, 1984, Harvard Medical School
  • BS, 1978, Chemistry, Swarthmore College

Research Summary

We seek to understand the genetic differences between males and females — both within and beyond the reproductive tract. We study the medical ramifications of these differences in a broad context, through comparative biological, evolutionary, developmental and clinically focused analyses. Our three main veins of research relate to sex differences in health and disease, sex chromosome genomics, and germ cell origins and development.

Awards

  • American Academy of Arts and Sciences, Fellow, 2012
  • March of Dimes, Developmental Biology, 2011
  • National Academy of Medicine, Member, 2008
  • National Academy of Sciences, Member, 2005
  • Howard Hughes Medical Institute, HHMI Investigator, 1990
  • MacArthur Foundation, MacArthur Fellowship, 1986
Richard A. Young

Education

  • PhD, 1979, Yale University
  • BS, 1975, Biological Sciences, Indiana University

Research Summary

We use experimental and computational technologies to determine how signaling pathways, transcription factors, chromatin regulators and small RNAs regulate gene expression in healthy and diseased cells. Our interests range from the basic molecular mechanisms behind gene control to drug development for cancer and other diseases caused by gene misregulation.

Awards

  • National Academy of Medicine, Member, 2019
  • National Academy of Sciences, Member, 2012
David Bartel

Education

  • PhD, 1993, Harvard University
  • BA, 1982, Biology, Goshen College

Research Summary

We study microRNAs and other small RNAs that specify the destruction and/or translational repression of mRNAs. We also study mRNAs, focusing on their untranslated regions and poly(A) tails, and how these regions recruit and mediate regulatory phenomena.

Awards

  • National Academy of Sciences, Member, 2011
  • Howard Hughes Medical Institute, HHMI Investigator, 2005
  • National Academy of Sciences Award in Molecular Biology, 2005
  • AAAS Newcomb Cleveland Prize, 2002
Gerald R. Fink

Education

  • PhD, 1965, Yale University
  • BA, 1962, Biology, Amherst College

Research Summary

We study the molecules that allow fungi to penetrate tissues and grow in a hostile environment. Using genetics, biochemistry and genomics, we answer questions such as:  What makes Candida albicans such a successful pathogen?  How do fungal pathogens evolve antibiotic resistance? How do they manage to change their genetic composition so rapidly?

The Fink lab is no longer accepting students.

Awards

  • Thomas Hunt Morgan Medal, Genetics Society of America, 2020
  • James R. Killian Jr. Faculty Achievement Award, 2018
  • American Association for the Advancement of Science, Fellow, 2015
  • Gruber International Prize in Genetics, 2010
  • American Philosophical Society, 2003
  • Yeast Genetics and Molecular Biology – Lifetime Achievement Award, 2002
  • George W. Beadle Award, Genetics Society of America, 2001
  • Ellison Medical Foundation, Senior Scholar Award, 2001
  • National Academy of Medicine, 1996
  • Wilbur Lucius Cross Medal, Yale University, 1992
  • Emil Christian Hansen Foundation Award for Microbiology, Denmark, 1986
  • American Academy of Arts and Sciences, Fellow, 1984
  • Yale Science and Engineering Award, 1984
  • National Academy of Sciences, Member, 1981
  • National Academy of Sciences Award in Molecular Biology, 1981
  • John Simon Guggenheim Memorial Foundation, Guggenheim Fellowship, 1974
Harvey F. Lodish

Education

  • PhD, 1966, Rockefeller University
  • BS, 1962, Chemistry and Mathematics, Kenyon College

Research Summary

Harvey Lodish has been a leader in molecular cell biology as well as a biotechnology entrepreneur for over five decades. Much of his early research focused on the regulation of messenger RNA translation and the biogenesis of plasma membrane glycoproteins. Beginning in the 1980s, his research focused on cloning and characterizing many proteins, microRNAs, and long noncoding RNAs important for red cell development and function. His laboratory was the first to clone and sequence mRNAs encoding many hormone receptors, mammalian glucose transport proteins, and proteins important for adipose cell formation and function. He went on to identify and characterize several genes and proteins involved in insulin resistance and stress responses in adipose cells. Over the years, he has mentored hundreds of undergraduates, PhD and MD/PhD students, and postdoctoral fellows, and continues to teach award-winning undergraduate and graduate classes on biotechnology.

Harvey Lodish closed his lab in 2020 and is no longer accepting students.

Awards

  • Wallace H. Coulter Award for Lifetime Achievement in Hematology, American Society of Hematology, 2021
  • Donald Metcalf Award, International Society for Experimental Hematology, 2020
  • American Society for Cell Biology WICB Sandra K. Masur Senior Leadership Award, 2017
  • Pioneer Award, Diamond Blackfan Anemia Foundation, 2016
  • Mentor Award in Basic Science, American Society of Hematology, 2010
  • President, American Society for Cell Biology, 2004
  • Associate Member, European Molecular Biology Organization (EMBO), 1996
  • National Academy of Sciences, Member, 1987
  • American Academy of Arts and Sciences, Fellow, 1986
  • John Simon Guggenheim Memorial Foundation, Guggenheim Fellowship, 1977