Probe expands understanding of oral cavity homeostasis

Approach opens the door to a greater understanding of protein-microbe interactions

Lillian Eden | Department of Biology
June 7, 2023

Your mouth is a crucial interface between the outside world and the inside of your body. Everything you breathe, chew or drink interacts with your oral cavity—the proteins and the microbes, including microbes that can harm us. When things go awry, the result can range from the mild, like bad breath, to the serious, like tooth and gum decay to more dire effects in the gut and other parts of the body. 

Even though the oral microbiome plays a critical role as a front-line defense for human health and disease, we still know very little about the intricacies of host-microbe interactions in the complex physiological environment of the mouth; a better understanding of those interactions is key to developing treatments for human disease. 

In a recent study published in PNAS, a collaborative effort revealed that one of the most abundant proteins found in our saliva binds to the surface of select microbes found in the mouth. The findings shed light on how salivary proteins and mucus play a role in maintaining the oral cavity microbiome. 

The collaboration involved members of the Imperiali lab in the Department of Biology and the Kiessling lab in the Department of Chemistry at MIT, as well as the Ruhl group at the University at Buffalo School of Dental Medicine, and the Grimes group at the University of Delaware. 

The paper is focused on an abundant oral cavity protein called zymogen granule protein 16 homolog B (ZG16B). Finding ZG16B’s interaction partners and gaining insight into its function were the overarching goals of the project. To accomplish this, Ghosh and colleagues engineered ZG16B to add reporter tags such as fluorophores. They called these modified proteins “microbial glycan analysis probes (mGAPs)” because they allowed them to identify ZG16B binding partners using complementary methods. They applied the probes to samples of healthy oral microbiomes to identify target microbes and binding partners. 

The results excited them. 

“ZG16B didn’t just bind to random bacteria. It was very focused on certain species including a commensal bacteria called Streptococcus vestibularis,” says first author Soumi Ghosh, a postdoctoral associate in the Imperiali lab. 

Commensal bacteria are found in a normal healthy microbiome and do not cause disease. 

Using the mGAPs, the team showed that ZG16B binds to cell wall polysaccharides of the bacteria, which indicates that ZG16B is a lectin, a carbohydrate-binding protein. In general, lectins are responsible for cell-cell interactions, signaling pathways, and some innate immune responses against pathogens. “This is the first time that it has been proven experimentally that ZG16B acts as a lectin because it binds to the carbohydrates on the cell surface or cell wall of the bacteria,” Ghosh highlights.

ZG16B was also shown to recruit Mucin 7 (MUC7), a salivary glycoprotein in the oral cavity, and, together the results suggest that ZG16B may help maintain a healthy balance in the oral microbiome by forming a complex with MUC7 and certain bacteria. The results indicate that ZG16B regulates the bacteria’s abundance by preventing overgrowth through agglutination when the bacteria exceed a certain level of growth. 

blue dots with red and green smudges
ZG16B recruits salivary mucin MUC7 onto Streptococcus vestibularis and enhance microbial aggregation. In this super-resolution image, both ZG16B (shown in red) and salivary mucin MUC7-enriched samples (shown in green), localize to the surface of S. vestibularis (shown in blue), leading to the formation of a ternary complex between the lectin, the mucin, and the microbes. Enhanced microbial clustering occurs during the recruitment of MUC7 on S. vestibularis by ZG16B, potentially to regulate the bacterial load on the oral cavity surfaces.
The scale bar shown here represents a 3-micron (µm) length.

“ZG16B, therefore, seems to function as a missing link in the system; it binds to different types of glycans—the microbial glycans and the mucin glycans—and ultimately, maintains a healthy balance in our oral cavity,” Ghosh says. 

Further work with this probe and samples of oral microbiome from healthy and diseased subjects could also reveal the lectin’s importance for oral health and disease. 

Current attention is focused on developing and applying additional mGAPs based on other human lectins, such as those found in serum, liver, and intestine to reveal their binding specificities and their roles in host-microbe interactions. 

“The research carried out in this collaboration exemplifies the kind of synergy that made me excited to move to MIT 5 years ago,” says senior co-author Laura Kiessling. “I’ve been able to work with outstanding scientists who share my interest in the chemistry and the biology of carbohydrates.” 

The senior authors of the paper—Barbara Imperiali and Kiessling — came up with the term for the probes they’re creating: “mGAPS to fill in the gaps” in our understanding of the role of lectins in the human microbiome, according to Ghosh. 

“If we want to develop therapeutics against bacterial infection, we need a better understanding of host-microbe interactions,” Ghosh says. “The significance of our study is to prove that we can make very good probes for microbial glycans, find out their importance in the frontline defense of the immune system, and, ultimately, come up with a therapeutic approach to disease.” 

This research was supported by the National Institute of Health.

New peptide modulators of the pro-apoptotic protein BAK

Biophysical characteristics such as peptide binding affinity and kinetics do not determine cell death function

Lillian Eden | Department of Biology
May 9, 2023

Billions of times a day, every day of our lives, cells receive signals to initiate the process of cell death. This strategic cell death, also called apoptosis, is one of the tools multicellular organisms use to maintain tissues and regulate immune responses: damaged, old, or superfluous cells are given the green light to, as it were, turn out the lights for the last time.

Programmed cell death is both extremely powerful and extremely regulated: for example, the careful culling of cells between our digits during embryonic development reveals fingers and toes. When programmed cell death goes awry, however, it can have serious consequences. Cells left unchecked can divide unstoppably and aggressively, leading to cancer. Dysregulated apoptotic pathways have also been implicated in neurodegenerative diseases like Alzheimer’s, where unrestrained cell death may play a part in the severity of the disease.

MIT Professor H. Robert Horvitz ‘68 shared a Nobel prize in 2002 for his foundational research on the genetics of programmed cell death and organ development in the nematode, a microscopic roundworm. Horvitz discovered that ced-9, a key gene in programmed cell death in nematodes, was similar in structure and function to the human gene bcl-2.

Targeting members of the BCL-2 protein family has already shown promise in the fight against cancer. For example, approved by the FDA in 2016, the oral drug Venetoclax is a BCL-2 inhibitor used to treat certain types of leukemia.

In a study published online Jan. 26 in Structure, Fiona Aguilar PhD ‘22 (Keating lab) and collaborators focused on a member of the BCL-2 protein family called BAK. When it is active, BAK promotes mitochondrial outer membrane disruption, leading to cell death, and is therefore referred to as a pro-apoptotic protein. But precisely how BAK becomes activated – or inhibited – is unknown.

“A greater understanding of BAK activation is interesting both from a fundamental biochemical and biophysical perspective as well as from the more translational one of BAK as a potential therapeutic target,” says lead author Fiona Aguilar.

BAK exists in two different forms: an inactive monomer and an active oligomer. A few activators of BAK (BIM, truncated BID, and PUMA) have already been identified and these proteins bind directly to BAK, leading to the model that binding of activators trigger changes in protein shape that allow BAK to transition from the inactive to active forms. To further explore this idea, Aguilar identified and characterized a number of other peptides that bind to and regulate BAK. To identify new peptide binders, the team used cell-surface display screening and computational protein design methods, including techniques developed by Keating lab alum Gevorg Grigoryan– dTERMen and TERMify – that use protein structural data to generate new protein sequences likely to bind a protein of interest.

In total, Aguilar et al. discovered 10 diverse new peptide binders of BAK that regulate its function.

Interestingly, some of the BAK-binding peptides inhibited activation rather than promoting it. Aguilar et al. found that inhibitors and activators of BAK shared many characteristics including structure as well as binding affinity and kinetics – the strength and rate that binders associate with and dissociate from BAK.

Newly identified activators had sequences both dissimilar from one another and from the previously known BAK activators BIM, truncated BID, and PUMA. The similarity of the sequence was not necessarily a good indicator of activation or inhibition. For example, an inhibitor and an activator differed by just two amino acids.

Aguilar and colleagues solved the crystal structures of two inhibitor-BAK complexes and one activator-BAK complex and found that the activator interacted with BAK with similar geometry as the two inhibitors. Also, the two inhibitors have only about 40% sequence identity, but bind very similarly to BAK.

Amy Keating, the senior author on the study, says “Fiona was tireless in identifying new peptides, testing their interactions with BAK, determining their functions, and solving structures to look for differences between activators and inhibitors. We were surprised that peptides with such different behaviors shared such common interaction properties.”

Although the puzzle is not yet solved, Aguilar believes the “transition state” between inactive and active forms of BAK is key.

“We think of activators as peptides that preferentially bind to the BAK transition state, whereas inhibitors are those that preferentially bind to the monomeric state,” Aguilar says. “Overall, we should be thinking more about the transition state, what steps are necessary to reach the transition state, and how to target the transition state.”

This study also added two sequences in the human proteome – BNIP5 and PXT1 – to the repertoire of known BAK binders. Not much is known about these sequences, Aguilar says, but the fact that they activate BAK could indicate that they may play a role in apoptotic pathways that have not yet been determined.

“The finding is something that people in the field are pretty excited about,” Aguilar says.

Ultimately, work remains to establish what characteristics of the binders determine their function, and how binding to BAK triggers the conformational changes that activate or inhibit this complex protein.

“It’s still unclear what it is about these sequences that trigger the allosteric network leading to BAK activation, but at least for now we can rule out the hypothesis that binding mode, affinity, and kinetics fully determine how this occurs,” Aguilar says.

Aguilar suggests that it will be interesting also to explore how these peptides interact with BAX, another pro-apoptotic protein in the BCL-2 family that is both structurally and functionally similar to BAK.

Fiona Aguilar is lead author and Amy Keating is senior author; Bob Grant and graduate students Sebastian Swanson, Dia Ghose, and Bonnie Su contributed. Collaborators Stacey Yu and Kristopher Sarosiek, from the Harvard T.H. Chan School of Public Health, helped with cell-based experiments. The research was funded by a National Institute of General Medical Sciences award, the MIT School of Science Fellowship in Cancer Research award, the John W. Jarve (1978) Seed Fund for Science Innovation (MIT) award, an award from the National Cancer Institute, a National Institute of Diabetes and Digestive and Kidney Diseases award, and Alex’s Lemonade Stand Foundation for Childhood Cancers award.

Remembering Stephen Goldman: An institution at MIT

Faculty and staff across MIT recall Goldman's unending commitment to his work for more than three decades.

Lillian Eden | Department of Biology
May 1, 2023

On Sept. 30, 2022, Stephen “Steve” Goldman, 59, passed away after a courageous battle with ALS. Goldman worked for MIT for more than 30 years, first with IS&T, then for the CSBi research program, and then in the biology department.

“Steve was an Institution,” says Stuart Levine, Director of the BioMicro center and Goldman’s supervisor for more than a decade. “He did a little bit of everything, and that’s really hard to find these days.”

Levine says he was the type of person who had his “whole being” wrapped up in the job. Steve Goldman was one of the first hires for the fledgling BioMicro Center, according to former supervisor Peter Sorger, whose current role is Otto Krayer Professor of Systems Pharmacology, Department of Systems Biology at Harvard Medical School. Steve Goldman, he said, was essential for setting up the Biology Department’s first server-based computing system. 

“He brought great enthusiasm and skill to the role and I also appreciated his sangfroid and sense of humor. This was essential because we were inventing the Center’s infrastructure and mission on the fly and were often in the dark–and also down in the steam tunnels. Steve was a real pioneer,” Sorger says. 

Goldman worked for MIT for more than 30 years and was known for his workspace filled with piles of memory sticks, CDs, cables, and devices in various states of repair.

Before MIT, Goldman lived in New York and worked on Wall Street. He met his wife of 32 years, Brenda Goldman (née Mahar) on a boat in the middle of the Caribbean.  

“He came up to me in a white tuxedo and asked me to have dinner,” Brenda Goldman recalls.

They clicked immediately. 

Around the time of their wedding two years later, Brenda Goldman had found a job in Cambridge and they were both eager for Steve Goldman to find work in Massachusetts, far from the high stress environment of Wall Street.  

“I found an ad at MIT and I said ‘this sounds very much like you,’” Brenda Goldman says. “He interviewed two, three times because MIT is very slow about getting people in the door. But most of the people that get in the door end up sticking around.”

Steve Goldman was no exception: he found out he’d gotten a job at MIT the day before the wedding and the rest, as they say, is history.

Whether it was a weekend or a holiday, if Steve Goldman got an alert that something was wrong, he would always try to follow up, fix the problem, or go in to offer hands-on help, according to Levine. 

Brenda Goldman even accompanied him a few times, noticing that her husband always found a friendly face. 

“There was always somebody around who waved or said hello. We couldn’t get out of the building without seeing someone, no matter which building it was,” she says.

Former department head Alan Grossman recalls many casual conversations about sports, especially baseball and softball. 

“He always greeted me with a warm smile and ‘hello professor,’” Grossman says. “He truly loved working in our department and we miss him.” 

Goldman’s second love, according to Brenda Goldman, was refereeing sports. Steve Goldman would often get to work early so he could wrap up in time to referee games. 

Stephen “Steve” Goldman, far left, loved refereeing sports in his spare time.

“He had something for almost every season of the year except winter,” Brenda Goldman says. “He liked it for the exercise, but he also liked it because it got him off his office chair and interacting with people.” 

Steve Goldman was organized—but not a neat person. His workspace was always filled with stuff—piles of memory sticks, CDs, cables, and devices open and in various stages of repair.

But “If you told him something broke, he knew what pile of things to pull the magic out of to make it work,” Brenda Goldman says. 

Levine says Steve Goldman’s death came as a bit of a shock: Goldman had been answering emails just days before his death.

“He always, always loved working for MIT,” Brenda Goldman says. “He loved computers and the work gave his life purpose.”

Following his death, the Biology Department made a contribution in Steve Goldman’s memory to the ALS Association of Massachusetts. He leaves behind his wife, children Kevin and Jason Goldman, in-laws, and many nieces and nephews.

3 Questions: Brady Weissbourd on a new model of nervous system form, function, and evolution

Developing a new neuroscience model is no small feat. New faculty member Brady Weissbourd has risen to the challenge in order to study nervous system evolution, development, regeneration, and function.

Lillian Eden | Department of Biology
April 26, 2023

How does animal behavior emerge from networks of connected neurons?  How are these incredible nervous systems and behaviors actually generated by evolution? Are there principles shared by all nervous systems or is evolution constantly innovating? What did the first nervous system look like that gave rise to the incredible diversity of life that we see around us?

Combining the study of animal behavior with studies of nervous system form, function, and evolution, Brady Weissbourd, a new faculty member in the Department of Biology and investigator in The Picower Institute for Learning and Memory, uses the tiny, transparent jellyfish Clytia hemisphaerica, a new neuroscience model.

Q: In your work, you developed a new model organism for neuroscience research, the transparent jellyfish Clytia hemisphaerica. How do these jellyfish answer questions about neuroscience, the nervous system, and evolution in ways that other models cannot?

A: First, I believe in the importance of more broadly understanding the natural world and diversifying the organisms that we deeply study. One reason is to find experimentally tractable organisms to identify generalizable biological principles – for example, we understand the basis of how neurons “fire” from studies of the squid giant axon. Another reason is that transformative breakthroughs have come from identifying evolutionary innovations that already exist in nature – for example, green fluorescent protein (GFP, from jellyfish) or CRISPR (from bacteria). In both ways, this jellyfish is a valuable complement to existing models.

I have always been interested in the intersection of two types of problems: how nervous systems generate our behaviors; and how these incredible systems were actually created by evolution.

On the systems neuroscience side, ever since working on the serotonin system during my PhD I have been fascinated by the problem of how animals control all of their behaviors simultaneously in a flexible and context-dependent manner, and how behavioral choices depend not just on incoming stimuli but on how those stimuli interact with constantly changing states of the nervous system and body. These are extremely complex and difficult problems, with the particular challenge of interactions across scales, from chemical signaling and dynamic cell biology to neural networks and behavior.

To address these questions, I wanted to move into a model organism with exceptional experimental tractability.

There have been exciting breakthroughs in imaging techniques for neuroscience, including these incredible ways in which we can actually watch and manipulate neuronal activity in a living animal. So, the first thing I wanted was a small and transparent organism that would allow for this kind of optical approach. These jellyfish are a few millimeters in diameter and perfectly transparent, with interesting behaviors but relatively compact nervous systems. They have thousands of neurons where we have billions, which also puts them at a nice intermediate complexity compared to other transparent models that are widely used – for example, C. elegans have 302 neurons and larval zebrafish have something like 100,000 in the brain alone. These features will allow us to look at the activity of the whole nervous system in behaving animals to try to understand how that activity gives rise to behaviors and how that activity itself arises from networks of neurons.

On the evolution side of our work, we are interested in the origins of nervous systems, what the first nervous systems looked like, and broadly what the options are for how nervous systems are organized and functioning: to what extent there are principles versus interesting and potentially useful innovations, and if there are principles, whether those are optimal or somehow constrained by evolution. Our last common ancestor with jellyfish and their relatives (the cnidarians) was something similar to the first nervous system, so by comparing what we find in cnidarians with work in other models we can make inferences about the origins and early evolution of nervous systems. As we further explore these highly divergent animals, we are also finding exciting evolutionary innovations: specifically, they have incredible capabilities for regenerating their nervous systems. In the future, it will be exciting to better understand how these neural networks are organized to allow for such robustness.

Q: What work is required to develop a new organism as a model, and why did you choose this particular species of jellyfish?

A: If you’re choosing a new animal model, it’s not just about whether it has the right features for the questions you want to ask, but also whether it technically lets you do the right experiments. The model we’re using was first developed by a research group in France, who spent many years doing the really hard work of figuring out how to culture the whole life cycle in the lab, injecting eggs, and developing other key resources. For me, the big question was whether we’d be able to use the genetic tools that I was describing earlier for looking at neural activity. Working closely with collaborators in France, our first step was figuring out how to insert things into the jellyfish genome. If we couldn’t figure that out, I was going to switch back to working with mice. It took us about two years of troubleshooting, but now we can routinely generate genetically modified jellyfish in the lab.

Switching to a new animal model is tough – I have a mouse neuroscience background and joined a postdoc lab that used mice and flies; I was the only person working with jellyfish but had no experience. For example, building an aquaculture system and figuring out how to keep jellyfish healthy is not trivial, particularly now that we’re trying to do genetics. One of my goals is now to optimize and simplify this whole process so that when other labs want to start working with jellyfish we have a simple aquaculture platform to get them started, even if they have no experience.

In addition to the fact that these things are tiny and transparent, the main reason that we chose this particular species is because it has an amazing life cycle that makes it an exciting laboratory animal.

They have separate sexes that spawn daily with the fertilized eggs developing into larvae that then metamorphose into polyps. We grow these polyps on microscope slides, where they form colonies that are thought to be immortal. These colonies are then constantly releasing jellyfish, which are all genetically identical “clones” that can be used for experiments. That means that once you create a genetically modified strain, like a transgenic line or a knockout, you can keep it forever as a polyp colony – and since the animals are so small, we can culture them in large numbers in the lab.

There’s still a huge amount of foundational work to do, like characterizing their behavioral repertoire and nervous system organization. It’s shocking how little we know about the basics of jellyfish biology – particularly considering that they kill more people per year than sharks and stingrays combined – and the more we look into it the more questions there are.

Q: What drew you to a faculty position at MIT?

A: I wanted to be in a department that does fundamental research, is enthusiastic about basic science, is open-minded, and is very diverse in what people work on and think about. My goal is also to be able to ultimately link mechanisms at the molecular and cellular level to organismal behavior, which is something that MIT Biology is particularly strong at doing. It’s been an exciting first few months! MIT Biology is such an amazing place to do science and it’s been wonderful how enthusiastic and supportive everyone in the department has been.

I was additionally drawn to MIT by the broader community and have already found it so easy to start collaborations with people in neuroscience, engineering, and math. I’m also thrilled to have recently become a member of The Picower Institute for Learning and Memory, which further enables these collaborations in a way that I believe will be transformational for the work in my lab.

It’s a new lab. It’s a new organism. There isn’t a huge, well-established field that is taking these approaches. There’s so much we don’t know, and so much that we have to establish from scratch. My goal is for my lab to have a sense of adventure and fun, and I’m really excited to be doing that here in MIT Biology.

3 Questions: Sara Prescott on the brain-body connection

New faculty member Sara Prescott investigates how sensory input from within the body control mammalian physiology and behavior.

Lillian Eden | Department of Biology
April 26, 2023

Many of our body’s most important functions occur without our conscious knowledge, such as digestion, heartbeat, and breathing. These vital functions depend on the signals generated by the “interoceptive nervous system,” which enables the brain to monitor our internal organs and trigger responses that sometimes save our lives. One second you are breathing normally as you eat your salad and the next, when a vinegar-soaked crouton enters your throat, you are coughing or swallowing to protect and clear your airway. We know our bodies are sensitive to cues like irritants, but we still have a lot to learn about how the interoceptive system works to meet our physiological needs, keep organs safe and healthy, and affect our behavior. We can also learn how chronic insults may lead to organ dysfunction and use what we learn to create therapeutic interventions.

Focusing on the airway, Sara Prescott, a new faculty member in the Department of Biology and Investigator in The Picower Institute for Learning and Memory, seeks to understand the ways our nervous systems detect and respond to stimuli in health and disease.

Q: You’re interested in interoceptive biology. What makes the nervous system of mice a good model for doing that?

A: Our flagship system is the mammalian airway. We use a mouse model and modern molecular neuroscience tools to manipulate various neural pathways and observe what the effects are on respiratory function and animal health.

Neuroscience and mouse work have a reputation for being a little challenging and intense, but I think this is also where we can ask really important questions that are useful for our everyday lives — and the only place where we can fully recapitulate the complexity of nervous system signaling all the way down to our organs, back to our brain, and back to our organs.

It’s a very fun place to do science with lots of open questions.

One of the core discoveries from my postdoctoral work was focusing on the vagus nerve as a major body-to-brain conduit, as it innervates our lungs, heart and gastrointestinal tract. We found that there were about 40 different subtypes of sensory neurons within this small nerve, which is really a remarkable amount of diversity and reflects the massive sensory space within the body. About a dozen of those vagal neurons project to the airways.

We identified a rare neuron type specifically responsible for triggering protective responses like coughing when water or acid entered the airway. We also discovered a separate population of neurons that make us feel and act sick when we get a flu infection. The field now knows what four to five vagal populations of neurons are actually sensing in the airways, but the remaining populations are still a mystery to us; we don’t know what those populations of sensory neurons are detecting, what their anatomy is, and what reflex effects those neurons are evoking.

Looking ahead, there are many exciting directions for the interoceptive biology field. For example, there’s been a lot of focus on characterizing the circuits underlying acute motor reflexes, like rapid responses to visceral stimuli on the timescale of minutes to hours. But we don’t have a lot of information about what happens when these circuits are activated over long periods of time. For example, respiratory tract infections often last for weeks or longer. We know that the airways undergo changes in composition when they’re exposed to different types of infection or stress to better accommodate future threats. One of the hypotheses we’re testing is that chronically activating neural circuits may drive changes in organ composition. We have this idea, which we’re calling reflexive remodeling: neurons may be communicating with stem cells and progenitor cells in the periphery to drive adaptive remodeling responses.

We have the genetic, molecular and circuit scale tools to explore this pheno­­­menon in mice. In parallel, we’re also setting up some in vitro models of the mouse airway mucosa to expedite receptor screening and to explore basic mechanisms of neuron-epithelium crosstalk. We hope this will inform our understanding of how the airway surface senses and responds to different types of irritants or damage. 

Q: Why is understanding the peripheral nervous system important, and what parts of your background are you drawing on for your current research?

A: The lab focuses on really trying to explore the body-brain connection. 

People often think that our mind exists in a vacuum, but in reality, our nervous system is heavily integrated with the rest of the body, and those neural interfaces are important, both for taking information from our body or environment and turning it into an internal representation of the world, and, in reverse, being able to process that information and being able to enact changes throughout the body. That includes things like autonomic reflexes, basic functions of the body like breathing, blood-gas regulation, digestion, and heart rate.

I’ve integrated both my graduate training and postdoctoral training into thinking about biology across multiple scales.

Graduate school for me was quite focused on deep molecular mechanism questions, particularly gene regulation, so I feel like that has been very useful for me in my general approach to neuroscience because I take a very molecular angle to all of this.

It also showed me the power of in vitro models as reductionist tools to explore fundamental aspects of cell biology. During my postdoc, I focused on larger, emergent phenotypes. We were able to manipulate specific circuits and see very impressive behavioral responses in animals. You could stimulate about 100 neurons in a mouse and see that their breathing would just stop until you remove the stimulation, and then the breathing would return to normal.

Both of those experiences inform how we approach a problem in my research. We need to understand how these circuits work, not just their connectivity at the anatomical level but what is driving their changes in sensitivity over time, the receptor expression programs that affect how they sense and signal, how these circuits emerge during development, and their gene expression.

There are still s­o many foundational questions that haven’t been answered that there’s enough to do in the mouse for quite some time.

Q: This all sounds fascinating. Where does it lead?

A: Human health has been my north star for a long time and I’ve taken a long, wandering path to find particular areas where I can scratch whatever intellectual itch that I have.

I originally thought I would be a doctor and then realized that I felt like I could have a more lasting impact by discovering fundamental truths about how our bodies work. I think there are a number of chronic diseases in which autonomic imbalance is actually a huge clinical component of the disorder.

We have a lot of interest in some of these very common airway remodeling diseases, like chronic obstructive pulmonary disorder—COPD—asthma, and potentially lung cancer. We want to ask questions like how autonomic circuits are altered in disease contexts, and when neurons actually drive features of disease. 

Perhaps this research will help us come up with better molecular, cellular or tissue engineering approaches to improve the outcomes for a variety of autonomic diseases. 

It’s very easy for me to imagine how one day not too far from now we can turn these findings into something actionable for human health.