THE DEPARTMENT OF BIOLOGY

Students in the MIT Department of Biology thrive in an atmosphere that promotes exploration and collaboration across all areas of research and study. The department's strong faculty rankings reflect that MIT Biology professors have a passion for instruction and strive to teach each course better than it's ever been taught before. Rigorous standards and a supportive culture combine to foster a powerful environment for learning at MIT.

The department is home to approximately 200 undergraduates, 200 graduate students. 100+ postdoctoral researchers. and more than 60 world-renowned faculty. including:

- · 3 Nobel laureates
- · 30 members of the National Academy of Sciences
- 15 Howard Hughes Medical Institute (HHMI) investigators
- 5 recipients of the National Medal of Science

Headquartered at the Koch Biology Building 68, the activities of the department span five additional state-ofthe-art research locations:

- Koch Institute for Integrative Cancer Research
- · Whitehead Institute for Biomedical Research
- · McGovern Center for Brain Research
- Picower Institute for Learning and Memory
- Broad Institute
- Ragon Institute

The department of Biology conducts research in the following fields, and undergraduates are exposed to a broad range of these activities:

- Biochemistry and biophysics
- Bioengineering
- Cancer biology
- Cell biology
- · Computational and systems biology
- Developmental biology
- Genetics
- Human genetics
- Immunology
- Microbiology
- Molecular medicine and human disease
- Neurobiology
- Plant molecular biology
- Structural biology

The undergraduate Biology program at MIT offers a robust course curriculum with an extensive lab research component. leading to a sophisticated understanding of the fundamental principles and current approaches in biology. This training provides excellent preparation for careers in such fields as:

- Academia/Research Institutions
- Medicine
- · Biotechnology, biomedical and pharmaceutical industries
- Government and public policy
- · Intellectual property/patent law
- · Consulting/venture capital
- · Science writing and communication
- · Science education and outreach

For Further Information, Contact:

Undergraduate Program

Joshua Stone 617-253-4718 stonej@mit.edu

Educational Administrator

Dr. Janice Chang 617-253-7344 jdchang@mit.edu

Biology Education Office

Room 68-120 617-253-4718

undergradbio@mit.edu

Biology website: https://biology.mit.edu

Biology Department Faculty Contacts:

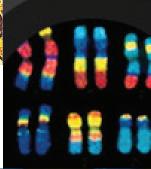
Undergraduate Officers

Prof. Adam Martin 617-324-0074

acmartin@mit.edu

Prof. Laurie Boyer 617-324-4036 lboyer@mit.edu

Head of Department


Prof. Amy Keating 617-452-3398 keating@mit.edu

THE UNDERGRADUATE PROGRAM IN

BIOLOGY AT MIT

COURSE GUIDE 2025-2026

THE BIOLOGY CURRICULUM

SB IN BIOLOGY, COURSE 7

https://biology.mit.edu/undergraduate/majorminor-requirements/

Spring

Introductory Lecture Subjects

Introductory Biology (choose one)			
7.012	Fall	7.014	Spring

7.012	ı alı	7.014
7.015	Fall	7.016

Core Subjects

703

7.05 or 5.07	Spring Fall	Biochemistry
7.06	Fall/Spring	Cell Biology
5.601 5.602 or		Thermodynamics I & Thermodynamics II
20.110	Fall	Thermodynamics of Biomoelcular Systems

Fall/Spring Genetics

Laboratory Subjects

7.002	Fall/Spring	Fundamentals of
		Experimental Molecular
		Biology
7.003	Fall/Spring	Applied Molecular Biology

Laboratory)

Second CI-M

7.19	Fall/Spring	Communication in
		Experimental Biology

CI-M = Communication Intensive in the Major (Two CI-Ms required for major)

Biology Restricted Electives

7.08J	Spring	Fundamentals of Chemical Biology
7.093*	Spring	Modern Biostatistics
7.094*	Spring	Modern Computational Biology
7.20	Fall	Human Physiology
7.21^	Fall	Microbial Physiology
7.23^	Spring	Immunology
7.24	Spring	Advanced Concepts in Immunology

7.25	Spring	Breakthroughs in Longevity and Rejuvenation
7.26	Spring	Molecular Basis of Infectious Disease
7.27	Spring	Principles of Human Disease and Aging
7.28	Spring	Molecular Biology
7.29J	Spring	Cellular and Molecular Neurobiology
7.30J	Fall	Fundamentals of Ecology
7.32	Fall	Systems Biology
7.33	Spring	Evolutionary Biology: Concepts, Models and Computation
7.35	Spring	Human Genetics and Genomics
7.36	Fall	The CRISPR Revolution: Engineering the Genome for Basic Science and Clinical Medicine
7.371	Fall	Biological and Engineering Principles Underlying Novel Biotherapeutics
7.38	Fall	Design Principles of Biological Systems
7.45	Fall	The Hallmarks of Cancer
7.46	Fall	Building with Cells
7.48	Spring	Cancer Therapeutics
7.49]	Spring	Developmental Neurobiology
9.17	Fall	Systems Neuroscience Laboratory (CI-M)
9.26J	Spring	Principles and Applications of Genetic Engineering for Biotechnology and Neuroscience

26J	Spring	Principles and Application
		of Genetic Engineering
		for Biotechnology and
		Neuroscience

		Neuroscience
6.C01*	Spring	Modeling with Machine Learning: From Algorithms to Applications
7.C01*	Spring	Machine Learning in Molecular and Cellular Biology

Students must complete 6.C01 & 7.C01 simultaneously in order to receive credit.

5.12, 7.03, 7.05 (or 5.07), and 2 subjects from approved list: 7.002 & 7.003, 7.06, or any of the Restricted Electives.

SB IN CHEMISTRY AND BIOLOGY, COURSE 5-7

An interdepartmental program offered jointly by the departments of Chemistry and Biology focuses on the intersections of these two subject areas, encompassing Biochemistry and Chemical Biology. There is flexibility in the elective subjects and the lab tracks that enables students to tailor their major program to their specific interests.

For more information see chemistry.mit.edu.

SB IN COMPUTER SCIENCE AND MOLECULAR BIOLOGY, COURSE 6-7

An interdepartmental curriculum offered jointly by EECS and the Department of Biology, Course 6-7 prepares students for careers in emerging areas at the interface of biology and engineering—including bioinformatics and computational molecular bioloav.

For more information see www.eecs.mit.edu

For interdepartmental programs, students are full members of both departments, with one academic advisor from each department.

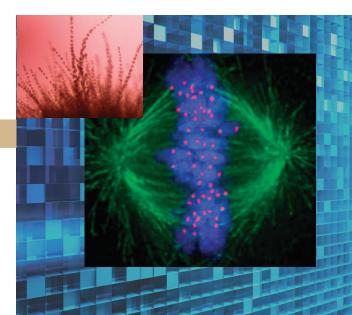
LABORATORY/RESEARCH

- · Students gain hands-on biology laboratory research experience through 7.002/7.003.
- · Undergraduate Research Opportunities Program (UROP)
- · Students who demonstrate outstanding research effort may participate in the annual Undergraduate Research Symposium.

ADVISING

Every student majoring in Biology, including double-majors. Course 5-7 and Course 6-7 students, is assigned to a Biology faculty advisor.

- · Two meetings per semester: registration and mid-term
- · Additional meetings upon request


Help with:

- Course selections and online approvals
- · Online add/drop approval
- Academic progress
- · Career advice

BIOLOGY UNDERGRADUATE STUDENT ASSOCIATION (BUSA)

The Biology Undergraduate Student Association (BUSA) serves all MIT students with an interest in biology. BUSA helps to broaden the biology undergraduate experience through both social and academic activities.

Contact us at: bexec@mit.edu

^{*}Half semester subjects that together fulfill one biology restricted elective

[^]Not offered 2025-2026