Structural Biology

Structural biology seeks to provide a complete and coherent picture of biological phenomena at the molecular and atomic level. The goals of structural biology include developing a comprehensive understanding of the molecular shapes and forms embraced by biological macromolecules and extending this knowledge to understand how different molecular architectures are used to perform the chemical reactions that are central to life.

In addition, structural biologists are interested in understanding related processes such as protein folding, protein dynamics, molecular modeling, drug design, and computational biology. Central tools used in this research include X-ray diffraction, NMR, electron microscopy, other spectroscopies and biophysical methods, protein expression, bio-physical and bio-organic chemistry, computer science and bioengineering.
Structural research at MIT includes groups focusing on: modular signaling domains and protein-protein interactions; coiled-coil structure, function, and design; structure of Z-DNA, RNA, and protein-nucleic acid complexes; molecular chaperones that fold and unfold proteins; G-protein mediated signal transduction; and ab initio protein design.

Faculty with research programs in structural biology: