Aviv Regev

Aviv Regev

Professor of Biology; Core Member, Broad Institute; Investigator, Howard Hughes Medical Institute

Aviv Regev pioneers the use of single-cell genomics and other techniques to dissect the molecular networks that regulate genes, define cells and tissues, and influence health and disease.

617-714-7021

Phone

NE30-6031

Office

Kate Mulherin

Assistant

617-714-7022

Assistant Phone

Education

  • PhD, 2003, Tel Aviv University
  • MS, 1997, Tel Aviv University

Research Summary

We are interested in biological networks, gene regulation and evolution. Our work focuses on dissecting complex molecular networks to determine how they function and evolve in the face of genetic and environmental changes, as well as during differentiation, evolution and disease. The Regev lab is no longer accepting students.

Awards

  • Jonathan Kraft Prize for Excellence in Cancer Research, Massachusetts General Hospital Center for Cancer Research, 2021
  • American Association for Cancer Research Academy, Fellow, 2021
  • National Academy of Medicine, Member, 2020
  • James Prize in Science and Technology Integration, National Academy of Sciences, 2020
  • Lurie Prize in Biomedical Sciences, Foundation for the National Institutes of Health, 2020
  • National Academy of Sciences, Member, 2019
  • Paul Marks Prize for Cancer Research, Memorial Sloan Kettering Cancer Center, 2017
  • International Society for Computational Biology (ISCB) Innovator Award, 2017
  • ISCB Fellow, 2016
  • Earl and Thressa Stadtman Scholar Award, 2014
  • Howard Hughes Medical Institute, HHMI Investigator, 2013
  • NIH Director’s Pioneer Award, 2008
  • Sloan Research Fellowship, 2008
  • Overton Prize, 2008

Recent Publications

  1. Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC. Fiskin, E, Lareau, CA, Ludwig, LS, Eraslan, G, Liu, F, Ring, AM, Xavier, RJ, Regev, A. 2021. Nat Biotechnol , .
    doi: 10.1038/s41587-021-01065-5PMID:34675424
  2. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Ouspenskaia, T, Law, T, Clauser, KR, Klaeger, S, Sarkizova, S, Aguet, F, Li, B, Christian, E, Knisbacher, BA, Le, PM et al.. 2021. Nat Biotechnol , .
    doi: 10.1038/s41587-021-01021-3PMID:34663921
  3. Joint single-cell measurements of nuclear proteins and RNA in vivo. Chung, H, Parkhurst, CN, Magee, EM, Phillips, D, Habibi, E, Chen, F, Yeung, BZ, Waldman, J, Artis, D, Regev, A et al.. 2021. Nat Methods 18, 1204-1212.
    doi: 10.1038/s41592-021-01278-1PMID:34608310
  4. A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies. Chen, X, Gentili, M, Hacohen, N, Regev, A. 2021. Nat Commun 12, 5506.
    doi: 10.1038/s41467-021-25777-zPMID:34535642
  5. Cycling cancer persister cells arise from lineages with distinct programs. Oren, Y, Tsabar, M, Cuoco, MS, Amir-Zilberstein, L, Cabanos, HF, Hütter, JC, Hu, B, Thakore, PI, Tabaka, M, Fulco, CP et al.. 2021. Nature 596, 576-582.
    doi: 10.1038/s41586-021-03796-6PMID:34381210
  6. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Ding, J, Regev, A. 2021. Nat Commun 12, 2554.
    doi: 10.1038/s41467-021-22851-4PMID:33953202
  7. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Delorey, TM, Ziegler, CGK, Heimberg, G, Normand, R, Yang, Y, Segerstolpe, Å, Abbondanza, D, Fleming, SJ, Subramanian, A, Montoro, DT et al.. 2021. Nature 595, 107-113.
    doi: 10.1038/s41586-021-03570-8PMID:33915569
  8. Compressed sensing for highly efficient imaging transcriptomics. Cleary, B, Simonton, B, Bezney, J, Murray, E, Alam, S, Sinha, A, Habibi, E, Marshall, J, Lander, ES, Chen, F et al.. 2021. Nat Biotechnol 39, 936-942.
    doi: 10.1038/s41587-021-00883-xPMID:33859401
  9. Author Correction: Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Gaublomme, JT, Li, B, McCabe, C, Knecht, A, Yang, Y, Drokhlyansky, E, Van Wittenberghe, N, Waldman, J, Dionne, D, Nguyen, L et al.. 2020. Nat Commun 11, 5619.
    doi: 10.1038/s41467-020-19357-wPMID:33139715
  10. The Human and Mouse Enteric Nervous System at Single-Cell Resolution. Drokhlyansky, E, Smillie, CS, Van Wittenberghe, N, Ericsson, M, Griffin, GK, Eraslan, G, Dionne, D, Cuoco, MS, Goder-Reiser, MN, Sharova, T et al.. 2020. Cell 182, 1606-1622.e23.
    doi: 10.1016/j.cell.2020.08.003PMID:32888429
More Publications

Multimedia

 

 

 

 

Photo credit: Casey Atkins