Anthony J. Sinskey

Anthony J. Sinskey

Professor of Biology

Anthony J. Sinskey explores the principles of metabolic engineering in both bacteria and plants.

617-253-6721

Phone

68-370

Office

Fen Tung

Assistant

617-253-6576

Assistant Phone

Education

ScD 1966, Massachusetts Institute of Technology

Research Summary

We leverage an interdisciplinary approach to metabolic engineering — focusing on the fundamental physiology, biochemistry and molecular genetics of important organisms to determine key factors that regulate the synthesis of different biomolecules. We support a broad range of interests, examining amino acid metabolism in Corynebacterium glutamicum, bioremediation and bioconversion processes in Rhodococcus, and biopolymer synthesis in Gram-negative bacteria. As for eukaryotic systems, we study both lipid biosynthesis and embryogensis in oil palm, as well as the accumulation of secondary metabolites in tropical plants.

Recent Publications

  1. Correction for Brigham et al., "Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16". Brigham, CJ, Speth, DR, Rha, C, Sinskey, AJ. 2017. Appl. Environ. Microbiol. 83, .
    doi: 10.1128/AEM.01216-17PMID: 28716865
  2. Metabolic engineering Corynebacterium glutamicum to produce triacylglycerols. Plassmeier, J, Li, Y, Rueckert, C, Sinskey, AJ. 2016. Metab. Eng. 33, 86-97.
    doi: 10.1016/j.ymben.2015.11.002PMID: 26645801
  3. Lignocellulose-derived inhibitors improve lipid extraction from wet Rhodococcus opacus cells. Kurosawa, K, Anthony Debono, C, Sinskey, AJ. 2015. Bioresour. Technol. 193, 206-12.
    doi: 10.1016/j.biortech.2015.05.103PMID: 26141279
  4. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Kurosawa, K, Laser, J, Sinskey, AJ. 2015. Biotechnol Biofuels 8, 76.
    doi: 10.1186/s13068-015-0258-3PMID: 26052344
  5. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Kurosawa, K, Plassmeier, J, Kalinowski, J, Rückert, C, Sinskey, AJ. 2015. Metab. Eng. 30, 89-95.
    doi: 10.1016/j.ymben.2015.04.006PMID: 25936337
  6. Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels. Kurosawa, K, Radek, A, Plassmeier, JK, Sinskey, AJ. 2015. Biotechnol Biofuels 8, 31.
    doi: 10.1186/s13068-015-0209-zPMID: 25763105
  7. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16. Lu, J, Brigham, CJ, Plassmeier, JK, Sinskey, AJ. 2015. Appl. Microbiol. Biotechnol. 99, 761-74.
    doi: 10.1007/s00253-014-5965-3PMID: 25081555
  8. Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16. Gai, CS, Lu, J, Brigham, CJ, Bernardi, AC, Sinskey, AJ. 2014. AMB Express 4, 2.
    doi: 10.1186/2191-0855-4-2PMID: 24410804
  9. The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. MacEachran, DP, Sinskey, AJ. 2013. Microb. Cell Fact. 12, 104.
    doi: 10.1186/1475-2859-12-104PMID: 24209886
  10. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Kurosawa, K, Wewetzer, SJ, Sinskey, AJ. 2013. Biotechnol Biofuels 6, 134.
    doi: 10.1186/1754-6834-6-134PMID: 24041310
More Publications

Multimedia